顿搜
飞过闲红千叶,夕岸在哪
类目归类
import numpy as np
def tanh(x):
return np.tanh(x)
def tanh_deriv(x):
return 1.0 - np.tanh(x)*np.tanh(x)
def logistic(x):
return 1/(1 + np.exp(-x))
def logistic_derivative(x):
return logistic(x)*(1-logistic(x))
class NeuralNetwork:
def __init__(self, layers, activation='tanh'):
"""
:param layers: A list containing the number of units in each layer.
Should be at least two values
:param activation: The activation function to be used. Can be
"logistic" or "tanh"
"""
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv
self.weights = []
for i in range(1, len(layers) - 1):
self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)
def fit(self, X, y, learning_rate=0.2, epochs=10000):
X = np.atleast_2d(X)
temp = np.ones([X.shape[0], X.shape[1]+1])
temp[:, 0:-1] = X # adding the bias unit to the input layer
X = temp
y = np.array(y)
for k in range(epochs):
i = np.random.randint(X.shape[0])
a = [X[i]]
for l in range(len(self.weights)): #going forward network, for each layer
#Computer the node value for each layer (O_i) using activation function
a.append(self.activation(np.dot(a[l], self.weights[l])))
#Computer the error at the top layer
error = y[i] - a[-1]
#For output layer, Err calculation (delta is updated error)
deltas = [error * self.activation_deriv(a[-1])]
#Staring backprobagation
for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer
#Compute the updated error (i,e, deltas) for each node going from top layer to input layer
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)
def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0]+1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a简单非线性关系数据集测试(XOR):
nn = NeuralNetwork([2,2,1], 'tanh')
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
print(i, nn.predict(i))[0, 0] [ 0.00012519]
[0, 1] [ 0.99843015]
[1, 0] [ 0.99831681]
[1, 1] [ 0.00482466]每个图片8x8
识别数字:0,1,2,3,4,5,6,7,8,9
from sklearn.datasets import load_digits
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
digits = load_digits()
X = digits.data
y = digits.target
X -= X.min() # normalize the values to bring them into the range 0-1
X /= X.max()
nn = NeuralNetwork([64,100,10],'logistic')
X_train, X_test, y_train, y_test = train_test_split(X, y)
labels_train = LabelBinarizer().fit_transform(y_train)
labels_test = LabelBinarizer().fit_transform(y_test)
print ("start fitting")
nn.fit(X_train,labels_train,epochs=3000)
predictions = []
for i in range(X_test.shape[0]):
o = nn.predict(X_test[i] )
predictions.append(np.argmax(o))
print (confusion_matrix(y_test,predictions))
print (classification_report(y_test,predictions))start fitting
[[44 0 0 0 0 0 0 0 0 0]
[ 0 41 0 0 0 1 1 0 0 3]
[ 0 2 41 0 0 0 0 0 0 0]
[ 0 0 1 35 0 3 0 2 1 1]
[ 0 0 0 0 44 0 0 0 0 0]
[ 1 0 0 0 0 36 0 0 0 0]
[ 0 0 0 0 0 0 46 0 0 0]
[ 0 0 0 0 1 0 0 48 1 0]
[ 0 6 0 0 0 1 0 0 38 0]
[ 0 1 0 1 1 1 0 0 5 43]]
precision recall f1-score support
0 0.98 1.00 0.99 44
1 0.82 0.89 0.85 46
2 0.98 0.95 0.96 43
3 0.97 0.81 0.89 43
4 0.96 1.00 0.98 44
5 0.86 0.97 0.91 37
6 0.98 1.00 0.99 46
7 0.96 0.96 0.96 50
8 0.84 0.84 0.84 45
9 0.91 0.83 0.87 52
avg / total 0.93 0.92 0.92 450